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VERTEX RECONSTRUCTION WITHOUT TRACK
RECONSTRUCTION (STRAIGHT TRACKS)

Yu.A.Yatsunenko

The determination of the vertex position without the previous recon-
struction of all straight trajectories (the global maximum position of the
“vertex function™) is described. The method is based on the use of the
discrete function of an accuracy and in the integration on the appro-
ximately-rectangular square. The analysis of the "Monte-Carlo™ events
is presented.

The investigation has been performed at the Scientifical-Methodi-
cal Division, JINR.

Onpenenenve BepiinH 63 BOCCTAHOBJIEHNA
TpaeKTOpHUi (MpsiMble TPEKH)

10.A . fluynenxo

MpencraBneH cnoco6 ompemeneHnsi KOOPAMHAT BepLUMHbI Ge3 npen-
BAapHUTENbHOrO BOCCTAHOBIEHHA BCeX MPAMBIX TpaekTopuil (ompenerne-
HHe rnoBanbHOro MakcMMyMa ~BepUMHHbIX GyHKuHmiA”). MeTog ocHo-
BaH Ha MCNOJIb30BAHMK JAMCKPETHBIX (PYHKINHA TOUHOCTH H HA HHTETPH-
poBaHHH N0 NpHGIWKEHHO ~ NpAMOYyTONnbHOA mnowmanu. Ipusonutca
aHasin3 Monre-Kapno” cobbithii.

PaGota BbimonHeHa B OGIIEHMHCTHTYTCKOM HAay4HO-METOOMYECKOM
otnenesmn OMAM.

In papers /1.2’ the "vertex functions” (VF) that permiy one to
determine vertex coordinates without previous reconstruction of all
trajectories were proposed. In particular implementation of VF for
straight trajectories '2/, in case when the parameters of the primary
single particle trajectory are known, can be considered successfull.
Functions of such type — ’vertex function of primary interaction”
(FPI) — are multiexternal. The main (global) maximum position cor-
responds to the interaction point, and principal difficulty in implemen-
tation of VF is to localize the global maximum (GM) region. To resol-
ve this task for FPI an "integral’’ method /8,4’ that requires analy-
tic calculation of the integrals (moments) for the analyzing function
qS(?) was used —
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where 7’V is the vertex position region.

The analysis of GM of one-dimensional FPI — C(z) (z is the pri-
mary vertex coordinate) is given in 2/, This work is devoted to the GM
position determination of two-dimensional VF in the detector systems
that register straight trajectories:

MN N-1 My X~a,y
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Each n-th detector (n=1,2,...,N) placed in Z , -position on the
z-axis registers M, of X-coordinates ap;(m =1,2,..., M) with the accu-
racy (¢) function G(t; o). The function G(t; o) can look like: dis-
crete —

1

20) ., ftlgo
G(t;0) = 3
0, It >e, (3a)
smooth —
G(t;o) = @ro® V2 L exp(-t2/20 9, (3b)
or partially-smooth —
y o -t¥50%), [t <oy
oc4\/5
0, it >ov5.

The GM position (x =u, z = v) of the function (2) corresponds to the
vertex coordinates of primary (for example) interaction. It should be
noted that vertex (u, v) determined by (2) may serve as an additional
detector (with single count) for posterior reconstruction of trajectories.
This fact initiates the attempts to utilise the VF possibilities.
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Determination of the Integral Momenta

The integrals (1) calculation is one of the complicated technologi-
cal” stage in this task. To determine momenta (1) it is necessary to ful-
fill analytic integration:

X-~a
L, &mn) = [axdzx-p)¥ (2-0)” Gl——(g, - 2,) +
: -z
s N (4)

+a'kl‘l'amn;amn]’
v =012, ..,4; v+pu<4

S(S. <x SXU; Z,s2g Z ;) is the Yertex search region, p,q are coordi-
nates of the center of D(x, 2) . This task becomes simpler if we use dis-
crete (3a) function of accuracy &t; o) and allow some distortion of
rectangle S (S increases).

This approximations can be illustrated for the particular case, when
the detector (zy) is located on the left of the S-region (i.e.zy<Zy)
and, besides, X;, > 0. The S’ integration area in variables: t=2 - 25,
y =(x-a )/t is given in fig. 1. The S’-area boundaries are defined
by the points: P = Xy-ayy) /(Zy,-2y), Po = Xy -agn) /(2 y-2g),
Py =(Xp-2,y) /(Zy-2y) Pg=X -3y /(Z y-2y). The integral
(4) has a non-zero value if the strip A,<y <A, intersects the curvili-
near S’-area, the strip boundaries are determined by the accuracy func-
tion parameters:

a -a o .

KN

Aj=T+R, Ag=T-R; T= o Rzeem—m— 2 (5)
‘ zz"zk Izn'—zkl

The primary integration area distortion is nonsignificant if the parame-
ter R(5) is of small value, i.e. if the accuracy (0) of the detectors is
high. In such an approximation, the maximal common surface of the
strip (A1, Ag) and 8” (dashed rectangular in fig. 1) is easily determined
and the integration result (4) has a simple form:

n+1 C k d A
1 p+l  k+v+1 Kk p+1-k 22
I, = e——o—— 3 ———t . A"(a,-p -gA
W w+l g9 k+vel lc (@-p - 98) 1A1(6)
k . . .
(Cy — binominal coefficients; ¢, d — the rectangular boundaries).
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Y F‘; Fig. 1. The integration region in the cur-
vilinear coordinates. The dashed rectangu-
lar is the region for the calculation of
the integral momenta of the vertex func-

P3 Pz tion for a measured point, that can be-
Al a b long to a trajectory emmitting from
the vertex.
A, A
< d

Iterational Vertex
Coordinates Determination

The determining momenta (1) are used further to analyse the ex-
cess /4 P-50/ that is the function of the vector indicating the subregion
of GM of VF (2). As it has been noted in” %’ , the creation of the univer-
sal iteration procedure for the reliable localization of the GM-subregion
is an open question. However, if some specific direction in a track expe-
riment exists (for instance, the direction of the primary particle in one-
beam accelerators), then one can propose the receipt to choose one of
the 6 possible vectors, corresponding to the external excess values — the
vector with minimal value of z -component should be chose. This choice
is proved to be correct in the primary vertex determination, because
vertices with higher values of z -component are secondary ones.

The chosen vector of the approximate vertex position is used
as initial point for the well-known gradient method (for instance) for
the exact determination of the vertex position. In the gradient method
the partially-smooth function of the accuracy (3c) can be used to avoid
the well-known properties in the behaviour of the second derivations of
smooth function (38b). The criterion of the iteration termination is not
only the given deviation value between two consequent iterations, but
also the amplitude of D(x, z) at the GM-position if the estimation of
number of tracks of the event is known ( Dpax = (N - 1).M , M is the
number of detectors, M is the number of tracks). .

The Image Defocusing

To search for the vertex “globally”and to precise it "locally’’, the me-
thod of function (2) “defocusing” by the change of the accuracy para-
meter (o) can be used. For the first iteration this parameter (¢) is in-
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Fig. 2. "Monte-Carlo” event with 2 ver- *%3
tices. All tracks are ideal straight lines. 730t
700 |-
es0 |
tentially ’’decreased” — o'=o . f |
f>1 (f=3 or 2) is the increase
factor (’’defocusing’’). This method
results to a more ’soft’” image of
the function, it means that the
“high-frequency’ component of <°°+es=+t36 —c =40 < T
D(x, z) is suppressed. This “high- TAscKs
frequency’ component may be so-
mewhat “’dangerous’ for both ’global’” and ’’local”’’ vertex search. As to
that, the next example is very significant: A track event with 2 vertices is
shown in fig. 2 (2 1=450 mm, x; = 0 mm; 2 g= 550, X3 =-5 mm), 3 de-
tectors with z =0, 200, 400 mm register the coordinates of a single track
of primary particle (these coordinates are also included in VF); the de-
tectors (z =600, 800, 1000, 1200 mm) register the coordinates of 9 se-
condary particles with the conditional accuracy ¢ =1 mm (all tracks
are ideal straight lines). The function D(x, z) for defocusing factor
f =2 is shown in fig. 3a and for f = 0.5 — in fig. 3b. Indeed, the main
maximum region in fig. 3a is practically unimodal to compare to ana-
logous region of fig. 3b. In following iterations the defocusing factor
can be decreased up to some limit (for instance, { in = 0.5).
It should be noted that the parameter ¢ reflects not only the detec-
tor accuracy, but also the degree of resolution of the whole track pat-
tern, that proves such a carefull”’ deal with vertex search.

800 |

Fig. 3a,b. The vertex function of the event shown in fig. 2 at the various
values of “defocusing” factor: t=2 (fig. 3a)and t=0.5 (fig. 3b).
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Vertex Determination Efficiency

To verify a method of the primary vertex determination 100 simp-
lest Monte-Carlo events where analyzed, as it is shown in fig. 2. The se-
condary vertex played a role of the noise source. The criterium of ver-
tex coordinated (u, v) determination precision was the statistic distri-
bution of the distance between the found vertex and given ones (X o,z ()

R=\/(u—xo)2+(v-zo)2.

The typical distribution of the parameter (R) is given in fig. 4, the num-
ber of detectors registering secondary particles is N;=10 and f = 3.
The relative number (E%) (to all analyzed events), when R <Ry, has
the behaviour: E(R <1 mm) = 91%, E(R < 5 mm ) = 99%.If multiplici-
ty is fixed, then the precision depends on the number of detectors, —
for Ny=4 the efficiency decreases: E(R <1 mm)= 72%, E(R< 5 mm) =
= 86 %.

When there is no noise (secondary vertices), the efficiency is high
enough: E(R <1 mm) < 99 % ER <5 mm) = 100%.

The analysis has been performed on 4.77 MHz IBM PC/XT-com-
patible computer. 100 events like those shown in fig. 2 were analyzed:
1 track of primary particle (3 detectors), 9 tracks of secondary particles
(10 detectors). It took about 24 seconds per event. It should be noted,
that it took about 80 % of CPU-time to calculate integrals (6), which
is logically simple, whereas the most logically complicated part of the
task — the determination of the integration limits — required only
about 17 % of CPU-time. The calculation of (6) in the programm D{x, z)
is not optimal at present: in the assumption ¢ = 0 the expression of
(6) is more simple and CPU-time is 18 sec per event (however, the ef-

ficiency decreases: E(R <5 mm) = 96%).
Undoubtedly, this programm of

D(xz, z) -analysis should be improved
substantially.

Nevetherless, one can hope
that this method of the vertex de-
termimation may be usefull for high
multiplicity (M ~100) and in the noi-
se condition.

Fig. 4. The statistic distribution of the dis-
tance between the found vertex position
and predetermined for the 100 “Monte-
Carlo” like shown in fig. 2.
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